Klasifikasi Penyebaran Covid-19 Menggunakan Algoritma C4.5 di Kecamatan Medan Helvetia

Authors

  • Riah Ukur Ginting Program Studi Sistem Informasi, Universitas Sari Mutiara Indonesia, Medan, Indonesia
  • Mirna Yanti Harefa Program Studi Sistem Informasi, Universitas Sari Mutiara Indonesia, Medan, Indonesia
  • Rianto Sitanggang Program Studi Sistem Informasi, Universitas Sari Mutiara Indonesia, Medan, Indonesia
  • Immanuel H G Manurung Program Studi Sistem Informasi, Universitas Sari Mutiara Indonesia, Medan, Indonesia

DOI:

https://doi.org/10.51544/jurnalmi.v8i2.4650

Keywords:

Algorithm, Classification of Covid-19 Spread, MySQl, PHP

Abstract

The development of Science and Technology currently plays an important role in companies and government agencies in providing useful information for the interests of operations and management. Therefore, many companies or government agencies have information technology departments or information systems. Likewise UPT. The Helvetia District Health Center, namely in processing and classifying the spread of Covid-19, must use an information system in order to support activities in handling the spread of the corona virus, especially in the Medan Helvetia District. In this study, a classification system was built to classify the spread of Covid-19 using the C4.5 Algorithm. The development of this system uses the PHP programming language with a MySQL database. The results obtained in the test by applying the C4.5 Algorithm then obtained an Accuracy of 0.859, so that with this system it is expected that the Covid-19 handling task force at UPT. The Helvetia District Health Center can classify the spread of Covid-19 in the Medan Helvetia District to be more efficient and effective.

Downloads

Download data is not yet available.

References

F. Fitriyadi dan M. Muqorobin, “Prediction System for the Spread of Corona Virus in Central Java with K-Nearest Neighbor (KNN) Method,” IJCIS, vol. 2, no. 3, hlm. 80–85, Agu 2021, doi: 10.29040/ijcis.v2i3.41.

F. Salsabila dan S. M. Intani, “IMPLEMENTASI ALGORITMA K-MEANS DAN C4.5 DALAM MENENTUKAN TINGKAT PENYEBARAN COVID-19 DI INDONESIA,” Seri Sains dan Teknologi, vol. 7, no. 1, hlm. 6, 2021.

S. M. Turnip dan P. Silitonga, “Analisis Pola Penyebaran Penyakit dengan Menggunakan Algoritma C4.5,” JTIUST, vol. 3, no. 1, Jun 2018.

D. Sartika dan Y. Yupianti, “Klasifikasi Penyakit Tiroid Menggunakan Algoritma C4.5 (Studi Kasus : Rumah Sakit Umum Daerah (RSUD) Hasanuddin Damrah Manna),” Rekayasa, vol. 13, no. 1, hlm. 71–76, Mar 2020, doi: 10.21107/rekayasa.v13i1.5912.

R. Muttaqien, M. G. Pradana, dan A. Pramuntadi, “Implementation of Data Mining Using C4.5 Algorithm for Predicting Customer Loyalty of PT. Pegadaian (Persero) Pati Area Office,” IJCIS, vol. 2, no. 3, hlm. 64–68, Agu 2021, doi: 10.29040/ijcis.v2i3.36.

N. Anwar, A. Pranolo, dan R. Kurnaiwan, “Grouping the community health center patients based on the disease characteristics using C4.5 decision tree,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 403, hlm. 012084, Okt 2018, doi: 10.1088/1757-899X/403/1/012084.

R. S. Putra, E. D. Putra, M. H. Rifqo, dan H. Witriyono, “Klasifikasi Penyebaran Covid-19 Menggunakan Algoritma C4.5 Kota Pagar Alam,” JUKOMIKA, vol. 4, no. 1, hlm. 13, 2021.

F. Riandari dan A. Simangunsong, Penerapan Algoritma C4.5 Untuk Mengukur Tingkat Kepuasan Mahasiswa. Kota Medan: CV. Rudang Mayang, 2019.

D. Sepri dan Y. Fimazid, “Pengelompokan Penyebaran Covid-19 di Kota Padang Menggunakan Algoritma K-Medoids,” Insearch, vol. 1, no. 2, hlm. 7, 2021.

A. A. K. Hartama, “Klasifikasi Penyakit Hipertensi Menggunakan Algoritma C4.5 Studi Kasus RSU. Provinsi NTB,” Universitas Sanata Dharma, Yogyakarta, 2017. [Daring]. Tersedia pada: https://repository.usd.ac.id/16526/2/125314119_full.pdf.

Downloads

Published

2023-12-28

How to Cite

Ginting, R. U., Harefa, M. Y., Rianto Sitanggang, & Immanuel H G Manurung. (2023). Klasifikasi Penyebaran Covid-19 Menggunakan Algoritma C4.5 di Kecamatan Medan Helvetia. JURNAL MAHAJANA INFORMASI, 8(2), 99–107. https://doi.org/10.51544/jurnalmi.v8i2.4650

Most read articles by the same author(s)