KARAKTERISASI POROSITAS NANOKARBON CANGKANG BUAH SAWIT MENGGUNAKAN SCANNING ELEKTRON MICROSCOPE (SEM)

Authors

  • Vivi Purwandari Program Studi Kimia, Universitas Sari Mutiara Indonesia
  • Hestina Hestina Program Studi Kimia, Universitas Sari Mutiara Indonesia
  • Zuhairiah Nasution Program Studi Analisa Farmasi dan Makanan, Universitas Sari Mutiara Indonesia
  • Hotromasari Dabukke Program Studi Teknik Elektromedis, Universitas Sari Mutiara-Indonesia
  • M Mukmin Program Studi Kimia, Universitas Sari Mutiara Indonesia

Keywords:

Porosity, Nanocarbon, Palm Waste, SEM

Abstract

Referring to data from the Directorate General of Plantations of the Ministry of Agriculture throughout 2019, the area of oil palm plantations in Indonesia is estimated at around 14.68 million hectares, with total production reaching 51.8 million tons per year or the largest in the world. In 1 ton of palm oil produces 6.5% shell waste or 65 kg. Nanocarbons with their unique properties are now widely used in various applications such as batteries, supercapacitors, sensors and so on. Utilization of palm fruit shell waste as a nanocarbon material with a micropore structure, large surface area and high pore volume is the goal of this research.

Downloads

Download data is not yet available.

References

Brun, N., Sakaushi, K., Yu, L., Giebeler, L., Eckert, J., & Titirici, M. M. (2013). Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries. Physical Chemistry Chemical Physics, 15(16), 6080–6087. https://doi.org/10.1039/c3cp50653c

Goodman, M. D., Arpin, K. A., Mihi, A., Tatsuda, N., Yano, K., & Braun, P. V. (2013). Enabling New Classes of Templated Materials through Mesoporous Carbon Colloidal Crystals. Advanced Optical Materials, 1(4), 300–304. https://doi.org/10.1002/adom.201300120

Haryanti, Norsamsi, S. (2014). Studi Pemanfaatan Limbah Padat Kelapa Sawit. Jurnal Konversi, 3(2), 20–26. https://www.researchgate.net/publication/315486354%0ASTUDI

Hu, B., Wang, K., Wu, L., Yu, S. H., Antonietti, M., & Titirici, M. M. (2010). Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 22(7), 813–828. https://doi.org/10.1002/adma.200902812

Larasati, T. D., Prakoso, T., Rizkiana, J., Devianto, H., Widiatmoko, P., & Nurdin, I. (2019). Nano Carbon Produced by Advanced Mild Hydrothermal Process of Oil Palm Biomass for Supercapacitor Material. IOP Conference Series: Materials Science and Engineering, 543(1). https://doi.org/10.1088/1757-899X/543/1/012031

Puccini, M., Stefanelli, E., Hiltz, M., Seggiani, M., & Vitolo, S. (2017). Activated carbon from hydrochar produced by hydrothermal carbonization of wastes. Chemical Engineering Transactions, 57(May), 169–174. https://doi.org/10.3303/CET1757029

Ratchahat, S., Viriya-Empikul, N., Faungnawakij, K., Charinpanitkul, T., & Soottitantawat, A. (2010). Synthesis of Carbon Microspheres from Starch by Hydrothermal Process. Sci. J. UBU, 1(2), 40–45.

Ryu, J., Suh, Y. W., Suh, D. J., & Ahn, D. J. (2010). Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon, 48(7), 1990–1998. https://doi.org/10.1016/j.carbon.2010.02.006

Supeno, M., & Siburian, R. (2020). New route: Convertion of coconut shell tobe graphite and graphene nano sheets. Journal of King Saud University - Science, 32(1), 189–190. https://doi.org/10.1016/j.jksus.2018.04.016

Tseng, R. L., & Tseng, S. K. (2005). Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. Journal of Colloid and Interface Science, 287(2), 428–437. https://doi.org/10.1016/j.jcis.2005.02.033

Downloads

Published

2021-08-29