PEMANTAUAN PASIEN KRITIS BERBASIS MEWS UNTUK DETEKSI DINI MELALUI ANALISIS LAJU PERNAPASAN DAN DETAK JANTUNG

Authors

  • Lusiana Poltekkes Kemenkes Surabaya
  • M Ridha Mak’ruf Poltekkes Kemenkes Surabaya
  • Roichatun Nasichah Poltekkes Kemenkes Surabaya

DOI:

https://doi.org/10.51544/elektromedik.v9i2.6532

Keywords:

Modified Early Warning Score, Laju Pernapasan, Detak Jantung, Deteksi Dini

Abstract

Keselamatan pasien menjadi aspek penting dalam pelayanan kesehatan, terutama bagi pasien kritis yang membutuhkan pemantauan intensif untuk mencegah komplikasi serius atau kematian mendadak. Modified Early Warning Score (MEWS) merupakan metode sistematis yang dapat digunakan untuk menilai tingkat kegawatan pasien secara cepat. Penelitian ini bertujuan mengembangkan sistem pemantauan tingkat kekritisan pasien berbasis MEWS dengan fokus pada laju pernapasan dan detak jantung. Sensor piezoelectric digunakan untuk mengukur laju pernapasan, sedangkan MAX30100 digunakan untuk mendeteksi detak jantung. Data dikirimkan secara nirkabel melalui ESP32 menggunakan koneksi Bluetooth menuju Personal Computer (PC) dan diolah untuk menghasilkan skor MEWS. Pengujian dilakukan untuk mengevaluasi akurasi sensor dan kemampuan transmisi data. Hasil menunjukkan nilai error terbesar pada laju pernapasan sebesar 0,0769% dan pada detak jantung sebesar 0,00888%. Sistem mampu mengirimkan data secara stabil hingga jarak 10 meter. Sistem ini terbukti mampu melakukan deteksi dini kondisi kritis dan berpotensi meningkatkan keselamatan pasien.

Downloads

Download data is not yet available.

References

C. P. Subbe, M. Kruger, P. Rutherford, and L. Gemmel, “Original papers QJM Validation of a modified Early Warning Score in medical admissions,” pp. 521–526, 2001.

N. Alam, E. L. Hobbelink, A. J. Van Tienhoven, P. M. Van De Ven, E. P. Jansma, and P. W. B. Nanayakkara, “The impact of the use of the Early Warning Score ( EWS ) on patient outcomes : A systematic review ଝ,” Resuscitation, vol. 85, no. 5, pp. 587–594, 2014, doi: 10.1016/j.resuscitation.2014.01.013.

M. Buist, S. Bernard, T. V Nguyen, G. Moore, and J. Anderson, “Association between clinically abnormal observations and subsequent in-hospital mortality : a prospective study,” vol. 62, pp. 137–141, 2004, doi: 10.1016/j.resuscitation.2004.03.005.

V. C. Burch, G. Tarr, and C. Morroni, “Modified early warning score predicts the need for hospital admission and inhospital mortality,” pp. 674–678, 2008, doi: 10.1136/emj.2007.057661.

S. M. R. Islam, D. Kwak, and H. Kabir, “The Internet of Things for Health Care : A Comprehensive Survey,” vol. 3, 2015.

A. S. Review, “IoT Adoption and Application for Smart Healthcare: ASystematic Review,” pp. 1–28, 2022.

S. Majumder, T. Mondal, and M. J. Deen, “Wearable Sensors for Remote Health Monitoring,” 2017, doi: 10.3390/s17010130.

L. Nahar, “IOT Based ICU Patient Health Monitoring System,” 2020.

P. Kakria, N. K. Tripathi, and P. Kitipawang, “A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors,” vol. 2015, 2015.

N. N. Sari, M. N. Gani, R. Aprilia, M. Yusuf, and R. Firmando, “Telemedicine for silent hypoxia : Improving the reliability and accuracy of Max30100-based system,” vol. 22, no. 3, pp. 1419–1426, 2021, doi: 10.11591/ijeecs.v22.i3.pp1419-1426.

R. Patil, “IOT BASED REAL TIME BPM AND SPO2 MONITORING AND ALERT SYSTEM USING MAX 30102,” no. May, pp. 247–251, 2024, doi: 10.1109/MetroInd4.0I.

S. M. Id, E. Aghayi, M. Noferesti, and H. Memarzadeh-tehran, “Smart Homes for Elderly Healthcare—Recent Advances and Research Challenges,” doi: 10.3390/s17112496.

A. Rasheed, E. Iranmanesh, W. Li, Y. Xu, Q. Zhou, and H. Ou, “An Active Self-Driven Piezoelectric Sensor Enabling Real-Time Respiration Monitoring,” pp. 1–10, 2019.

K. Lei, Y. Hsieh, Y. Chiu, and M. Wu, “The Structure Design of Piezoelectric Poly(vinylidene Fluoride) (PVDF) Polymer-Based Sensor Patch for the Respiration Monitoring under Dynamic Walking Conditions,” pp. 18801–18812, 2015, doi: 10.3390/s150818801.

K. Nikita, “Android based Portable Health Support System,” vol. 9, no. 04, pp. 511–516, 2020.

H. J. Hassaballah and R. A. Fayadh, “Implementation of wireless sensor network for medical applications,” IOP Conf. Ser. Mater. Sci. Eng., vol. 745, no. 1, 2020, doi: 10.1088/1757-899X/745/1/012089.

M. Haerinia, “Wireless Power Transfer Approaches for Medical Implants : A Review,” no. D, pp. 209–229, 2020.

Z. Defne et al., “Modified Early Warning Score and VitalPac Early Warning Score in geriatric patients admitted to emergency department,” pp. 1–7, 2015, doi: 10.1097/MEJ.0000000000000274.

A. Wang, C. Fang, S. Chen, S. Tsai, and W. Kao, “ScienceDirect Periarrest Modified Early Warning Score ( MEWS ) predicts the outcome of in-hospital cardiac arrest,” J. Formos. Med. Assoc., vol. 115, no. 2, pp. 76–82, 2016, doi: 10.1016/j.jfma.2015.10.016.

M. Marshall and J. Rathbone, “Early Intervention for psychosis ( Review ),” no. 3, 2010.

Downloads

Published

2025-12-11