ANALISIS PENGUJIAN ARUS BOCOR PADA PASIEN MONITOR BERDASARKAN METODE STANDAR IEC 62353:2014
DOI:
https://doi.org/10.51544/elektromedik.v9i1.6330Keywords:
Arus bocor, IEC 62353, Pasien monitor, Keselamatan listrik, Electrical safety analyzerAbstract
Latar belakang: Keselamatan listrik pada peralatan medis merupakan aspek yang sangat krusial karena berhubungan langsung dengan perlindungan pasien dan tenaga medis. Arus bocor, meskipun kecil, dapat menimbulkan risiko kejutan listrik yang berbahaya. Oleh sebab itu, diperlukan standar internasional dalam pengujian keselamatan listrik, salah satunya IEC 62353, yang memberikan pedoman praktis dalam pemeriksaan rutin perangkat medis di lapangan.
Tujuan: Penelitian ini bertujuan untuk menganalisis dan membandingkan metode pengujian arus bocor pada pasien monitor berdasarkan standar IEC 62353, serta memberikan rekomendasi metode yang paling sesuai dalam menjamin keselamatan listrik peralatan medis.
Metode: menggunakan desain eksperimental dengan pengujian pada dua unit pasien monitor, yaitu Dinamap PRO400V2 dan Nihon Kohden. Instrumen yang digunakan adalah Electrical Safety Analyzer Bender UNIMET 810ST. Tiga metode utama dari IEC 62353 diterapkan, yaitu metode Langsung (Direct), Alternatif (Alternative), dan Diferensial (Differential). Data hasil pengujian dianalisis secara deskriptif dengan membandingkan nilai arus bocor terhadap ambang batas standar.
Hasil: Hasil pengujian menunjukkan bahwa seluruh nilai arus bocor masih berada di bawah batas maksimum IEC 62353, yakni 500 µA untuk metode Langsung dan Diferensial, serta 1000 µA untuk metode Alternatif. Analisis menunjukkan bahwa metode Diferensial lebih sensitif, metode Langsung lebih stabil, sedangkan metode Alternatif dapat digunakan untuk peralatan dalam kondisi tidak aktif.
Kesimpulan: Pengujian menggunakan standar IEC 62353 terbukti efektif dalam memastikan keselamatan listrik pasien monitor. Hasil penelitian ini memiliki implikasi penting bagi pengabdian kepada masyarakat, khususnya dalam peningkatan kompetensi tenaga elektromedis dan upaya pemeliharaan peralatan medis agar tetap aman, andal, dan sesuai standar internasional.
Downloads
References
Urden, L. D., Stacy, K. M., and Lough, M. E., Critical Care Nursing: Diagnosis and Management, 10th ed., St. Louis: Elsevier, 2022.
Bronzino, J. D. and Peterson, D. R., The Biomedical Engineering Handbook, 5th ed., Boca Raton: CRC Press, 2020.
S. P. Webster, Medical Instrumentation: Application and Design, 5th ed., Hoboken: Wiley, 2019.
International Electrotechnical Commission, IEC 60601-1: Medical Electrical Equipment–General Requirements for Basic Safety and Essential Performance, Geneva: IEC, 2012.
International Electrotechnical Commission, IEC 62353: Medical Electrical Equipment–Repeated Test and Test after Repair, Geneva: IEC, 2014.
World Health Organization, Medical Device Technical Series: Electrical Safety Testing in Healthcare Facilities, Geneva: WHO Press, 2021.
A. Kumar and S. R. Mehta, “Patient monitor safety evaluation using alternative leakage current test methods,” IEEE Transactions on Biomedical Engineering, vol. 71, no. 5, pp. 1598–1606, 2024.
A. F. Hassan et al., “Risk assessment of electrical leakage currents in intensive care units,” Journal of Clinical Medicine Research, vol. 13, no. 6, pp. 321–328, 2022.
A. B. Rahman et al., “Implementation of IEC 62353 in Malaysian hospitals: Challenges and opportunities,” Asian Journal of Biomedical Engineering, vol. 15, no. 2, pp. 101–110, 2023.
J. Smith, “Comparative study of leakage current measurement in medical devices using IEC 62353,” Biomedical Engineering Online, vol. 23, no. 2, pp. 45–53, 2024.
S. K. Sharma and P. Patel, “Comparative reliability analysis of direct and differential leakage current tests,” International Journal of Biomedical Technology, vol. 19, no. 3, pp. 141–150, 2020.
L. Martins, F. Costa, and P. Silva, “Evaluation of IEC 62353 electrical safety testing in critical care equipment: A multicenter study,” Journal of Clinical Engineering and Technology, vol. 45, no. 2, pp. 77–85, 2023.
A. Omar, “Preventive maintenance of patient monitoring systems based on leakage current trends,” Biomedical Engineering Advances, vol. 14, pp. 67–74, 2023.
R. Lee, T. Johnson, and K. Patel, “Electrical safety assessment in patient monitoring systems,” Journal of Clinical Engineering, vol. 49, no. 3, pp. 123–131, 2024.
Iadanza, E., “Application of electrical safety analyzers in biomedical engineering practice,” Health Technology and Informatics Journal, vol. 277, pp. 89–95, 2019.
M. Yamada and H. Tanaka, “Evaluation of applied part leakage currents in Japanese medical facilities,” Japanese Journal of Medical Engineering, vol. 41, no. 4, pp. 221–229, 2021.
S. P. Webster, Medical Instrumentation: Application and Design, 5th ed., Hoboken: Wiley, 2019.
Carr, J. J. and Brown, J. M., Introduction to Biomedical Equipment Technology, 5th ed., Upper Saddle River: Pearson, 2018.
S. K. Sharma and P. Patel, “Comparative reliability analysis of direct and differential leakage current tests,” International Journal of Biomedical Technology, vol. 19, no. 3, pp. 141–150, 2020.
T. S. Nguyen and D. Hoang, “Electrical safety testing of multiparameter patient monitors,” IEEE Access, vol. 12, pp. 55123–55132, 2024
International Electrotechnical Commission, IEC 62353: Medical Electrical Equipment–Repeated Test and Test after Repair, Geneva: IEC, 2014.
National Fire Protection Association, NFPA 99: Health Care Facilities Code, Quincy, MA: NFPA, 2021.
Badan Standardisasi Nasional, Peralatan Medis Listrik: Persyaratan
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Imamul Akbar, Rino Ferdian Surakusumah, Nik Zaidi Nik Bulyamin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







.png)